J Stat Phys (2008) 133: 587-615
DOI 10.1007/s10955-008-9624-x

An Algebraic Derivation of the Eigenspaces Associated
with an Ising-Like Spectrum of the Superintegrable
Chiral Potts Model

AKinori Nishino - Tetsuo Deguchi

Received: 7 June 2008 / Accepted: 5 September 2008 / Published online: 2 October 2008
© Springer Science+Business Media, LLC 2008

Abstract In terms of the s[, loop algebra and the algebraic Bethe-ansatz method, we derive
the invariant subspace associated with a given Ising-like spectrum consisting of 2" eigen-
values of the diagonal-to-diagonal transfer matrix of the superintegrable chiral Potts (SCP)
model with arbitrary inhomogeneous parameters. We show that every regular Bethe eigen-
state of the 7,-model leads to an Ising-like spectrum and is an eigenvector of the SCP trans-
fer matrix which is given by the product of two diagonal-to-diagonal transfer matrices with
a constraint on the spectral parameters. We also show in a sector that the 7,-model com-
mutes with the sl, loop algebra, L(sl,), and every regular Bethe state of the 7,-model is
of highest weight. Thus, from physical assumptions such as the completeness of the Bethe
ansatz, it follows in the sector that every regular Bethe state of the t,-model generates an
L(sl,)-degenerate eigenspace and it gives the invariant subspace, i.e. the direct sum of the
eigenspaces associated with the Ising-like spectrum.

1 Introduction

The chiral Potts model [3, 5, 11, 31, 42], which is an N-state generalization of the two-
dimensional Ising model, has been extensively studied from various points of view in recent
years. The model is solvable in the sense that its Boltzmann weights satisfy the star-triangle
relation to give a commutative family of transfer matrices [11]. In fact, the free energy, inter-
facial tension and order parameters of the model are exactly calculated in the thermodynamic
limit [2, 8—10].

In the superintegrable case of the chiral Potts model, all the eigenvalues of the trans-
fer matrix are grouped into sets of 2" eigenvalues similar to those of free fermions. We
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call it the superintegrable chiral Potts (SCP) model and the set of eigenvalues an Ising-like
spectrum [1, 2, 6-8, 41]. The Onsager algebra is powerful to derive the spectrum of the
two-dimensional Ising model [18, 38, 39], in which a set of 2" eigenvalues corresponds
to a 2"-dimensional irreducible representation of the algebra. The approach is extended to
the Zy-symmetric quantum system corresponding to the SCP model [16, 18, 42]. How-
ever, in contrast to the Ising-case, the approach does not work enough to derive an exact
form of the spectrum for N > 3. A derivation of the exact form is established by the ap-
proach [1, 6-8, 41] using functional relations among diagonal-to-diagonal transfer matrices
of the SCP model [12]. There, the Ising-like spectrum is described by a polynomial, which
we call the SCP polynomial. However, it is still nontrivial to define the SCP polynomial by
an algebraic method.

In this paper, we present a method for constructing basis vectors of the direct sum of the
eigenspaces associated with a given Ising-like spectrum of the transfer matrix of the SCP
model in some sector. In short, we construct the invariant subspace of the Ising-like spec-
trum. First, by the algebraic Bethe-ansatz method, we show that every regular Bethe state of
the 7,-model is an eigenvector of the SCP transfer matrix. Here it is defined by the product
of two diagonal-to-diagonal transfer matrices of the SCP model with a constraint on the
spectral parameters. We shall define it in detail in Sect. 2.1. The 1,-model is the integrable
N-state spin chain corresponding to a nilpotent case of the cyclic L-operator [34, 35]; the
transfer matrix constructed from the cyclic L-operators commutes with the transfer matrix
of the chiral Potts model [13]. Secondly, we show in a sector that the t,-model has the sym-
metry of the sl, loop algebra, L(sl,), and also in the sector that every regular Bethe state of
the 7,-model is a highest weight vector of the symmetry. Thus, the degenerate eigenspaces
are generated by regular Bethe eigenstates [25, 37] in the sector through the symmetry. Here
we shall define regular Bethe states in Sect. 2.2. Thirdly, with some physical assumptions
such as the completeness of the Bethe ansatz, we show that for the diagonal-to-diagonal
transfer matrix of the SCP model the invariant subspace of the Ising-like spectrum associ-
ated with a regular Bethe state is given by the L(sl,)-degenerate eigenspace of the 7,-model
generated by the same regular Bethe state.

We apply a generalization of the algebraic Bethe ansatz to the SCP transfer matrix with
arbitrary inhomogeneous parameters, and do not use the functional relations among the
transfer matrices [12]. The algebraic approach treats the SCP model and the t,-model in a
unified way, which might be useful for calculating correlation functions for the model.

We reproduce the SCP polynomial as a kind of Drinfeld polynomial which character-
izes the finite-dimensional highest weight representation of L(sl,) generated by the regular
Bethe state. Here it is not necessarily irreducible [24]. For generic values of inhomogeneous
parameters, however, the zeros of the polynomial should be distinct, and hence the highest
weight representation should be irreducible. Thus, the SCP polynomial should be identified
with the Drinfeld polynomial [15, 23, 24, 27].

The algebraic derivation of the invariant subspace associated with the Ising-like spec-
trum proves in the sector a previous conjecture that for the Zy-symmetric Hamiltonian the
representation space of the Onsager algebra associated with an SCP polynomial should cor-
respond to the L(sl,)-degenerate eigenspace of the t,-model associated with the Drinfeld
polynomial [37].

For the 7,-model we shall show a Borel subalgebra symmetry of L(sl,) through a gauge
transformation on the L-operators. In fact, it is known that every finite-dimensional irre-
ducible representation of the Borel subalgebra is extended to that of the sl, loop alge-
bra [14, 22]. We shall thus derive the L(s(,) symmetry of the 7,-model in the general N -state
case with inhomogeneous parameters in the paper. Previously, the symmetry has been shown
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for the odd N and homogeneous case [37]. The present result also proves the L (sl,) symme-
try of the 7,-model for the even N and homogeneous case. It thus proves the conjecture [4]
that the proposed set of commuting operators forms the L(sl,) symmetry of the 7,-model.
The L(sl,) symmetry of the 7,-model is closely related to that of the spin-1/2 XXZ spin
chain at roots of unity [21, 24-26].

The article consists of the following: in Sect. 2, we introduce the SCP model and the
7,-model. We review the algebraic Bethe-ansatz method for the 7,-model [41] and the Yang-
Baxter relation between the monodromy matrices of the two models [13]. In Sect. 3, gen-
eralizing the algebraic Bethe ansatz, we show that every regular Bethe eigenstate of the
75-model is an eigenvector of the SCP transfer matrix with a constraint on the spectral pa-
rameters. The expression of eigenvalues of the product of two diagonal-to-diagonal transfer
matrices suggests the Ising-like spectrum to each of the two transfer matrices. In Sect. 4, we
show in a sector the Borel subalgebra symmetry of the t,-model through a gauge transfor-
mation on the L-operators. It thus follows from [14, 22] that the t,-model has the L(sl,)
symmetry. We also show in the sector that every regular Bethe state of the 7,-model gen-
erates an irreducible highest weight representation of L(sl,), which gives the degenerate
eigenspace associated with the regular Bethe state for the 7,-model. We then formulate the
conjecture that the diagonal-to-diagonal transfer matrix of the SCP model has the Ising-like
spectrum in the L(sl,)-degenerate eigenspace of the 7,-model.

2 Models and Yang-Baxter Relations
2.1 The Chiral Potts Model and the Superintegrable Conditions

We briefly review the chiral Potts model [3, 5, 11] and its superintegrable point [1, 2, 6-8].
The model is defined on a two-dimensional square lattice with N -state local spins interacting
along the edges. For two adjacent local spins o; and o; which take values in Zy, that is,
0,1,..., N — 1, two edge-types of the Boltzmann weights W,,(c; — o;) and W,,(0; — 0;)
are given as

— Y
— Xpw P — Xq@

Wy () = Wy (0) ]'[upuqi,

Up Y
Wpe(n) = qu(o)l_[ —E= Vo — Yy
j=1

_ Mg Vp —xqa)/

where w is an Nth root of unity. Here p = (x,, y,, 1) and g = (x4, ¥4, i44), Which we call
rapidities, are given on a Fermat curve defined by

kxl =1—Kp", kyd =1—kul, K+k>=1. 2.1

Note that both W, (n) and W,,q (n) are functions of variable n € Zy. The model is integrable
in the sense that the Boltzmann weights satisfy the star-triangle relations [3, 11]. We also
give the Fourier-transformed Boltzmann weight:

N-1

pq(n) Za) M Wpg(m) =W, pq(O)HM.

m=0 j=1 Yqu ypquj

We introduce the S-operator [13, 17] to construct the monodromy matrix of the SCP
model. Let Z and X be operators which have the action Zv, = v, and Xv, = Vs
for a standard basis {v,|oc € Zy} of the N-dimensional vector space CV. By using
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them and combining the Boltzmann weights, we define the S-operator S(p, p’;q,q’) €
End(CN @ CV) by

1
S(p.P'4.4) = 15 Pevecy Y Wypag (n1na,ns, n) X" Z X" @ X ZDX T,
{ni}

qu’(nl) qu(nZ) Wp’q’(n3) Wp’q(nét)
Wpg (0) Wpg(0) Wy (0) Wyrg(0)

wpp’qq’(nl , N2, N3, Ng) = (2:2)

where Pevgen is the standard permutation operator: Penvgen @ Vg @ v = v @ v,. The
action of the S-operator is extended to a tensor product (CY)®* ® CV, where the tensor
product (CV)®% is the quantum space describing an L-site spin chain and the last space
CV is an auxiliary space. We denote by S;(p, p’; q,q’) the S-operator acting on the ith
component of (CY)®% and auxiliary space C" as the S-operator S(p, p’; ¢, q’) and other
components of (CV)®" as the identity. Here we use the operators Z; and X; on (CV)®F
given by

Zi=d® - ®Z® - ®id, X,=d® - ®X® - Qid

We construct monodromy matrix T (qy, g2; {p, p’}) € End((CV)®" ® CV) and transfer ma-
trix 1(q1, ¢2; {p. p'}) € End((C")®*) as

L
T(qi.q:lp. PD=[[Sipi-Piiqr-a).  t(qr.q: {p. ') =tren (T(q1. q2: {p. P'D)).

i=1
(2.3)
where both p; and p] are rapidities of the ith component of the quantum space (CV)®~
and ¢, and g, are those of the auxiliary space CV. The parameters ¢; and g, are called
spectral parameters. Here the symbol {p, p’} denotes the set of rapidities p; and p; for
i=1,2,...,L.
The transfer matrices satisfy the commutativity

t(q1, q2; {p, PPt s {p. pP'Y =t (1, ras {p, P'DE(q1, g3 {p, P'D),

which is a result of the star-triangle relation [11]. Then the eigenvectors of the transfer matrix
t(q1,q2; {p, p'}) are independent of the spectral parameters g, or g,.

We call the transfer matrix #(q, g2; {p, p'}) the row-to-row transfer matrix of the chiral
Potts model since the Boltzmann weight w4, (11, 12, 13, n4) is considered as that of a
vertex model. The row-to-row transfer matrix #(q1, g»; {p, p’}) is given by the product of
two types of diagonal-to-diagonal transfer matrices Tp(x,, , y,,) and T (x4, Yq,) Which are
defined by

Tp(x ' = ﬁ Wi (i — a;) meq(oiﬁ — o)
D(Xg, Yg)o W, (0) W, 14(0)

P
i=1

L / /
o _ 1_[ Wl’f‘f(ai —0;) Wpii1q(0i —0/4)
i=1 Wplfq (0) W[’i+lq (O)

’

where the periodic boundary conditions 0,41 = 07 and prpy; = p; are imposed. The
diagonal-to-diagonal transfer matrices are diagonalized by a pair of invertible matrices U
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and V, which are independent of the parameter ¢, as U~'Tp(x,, y,)V = A(x,, y,) and
VﬁlTD(xqv yq)U = A(xqv yq)-

Let us now discuss the superintegrable case. When rapidities p and p’ satisfy the condi-
tions x, =y, Yp = Xpr, p = u;,', we denote the rapidity p’ by p.

Definition 2.1 We call the chiral Potts model superintegrable, if rapidities {p, p'} satisfy
the conditions p; = p; forall i, thatis, x,, =y, yp, = X1, ip, = u;{l (I1<i<L) [6-8].

In the superintegrable case, we denote by T (qi, g2; {p}) and ?(q1, g2; {p}) the mon-
odromy matrix and the row-to-row transfer matrix of the chiral Potts model, respectively.
That is, we express T(q1, g2; {p}) = T(q1, ¢2; {p, p}) and 1(q1. q2; {p}) =1(q1. g2; {p, P})-
Hereafter we call the row-to-row transfer matrix 7(gi, ¢»; {p}) the SCP transfer matrix,
briefly. We also call T'(q1, g2; {p}) the SCP monodromy matrix.

2.2 The 1,-Model and the Algebraic Bethe Ansatz

Let us now introduce an integrable N-state spin chain whose transfer matrix com-
mutes with the SCP transfer matrix. We introduce the cyclic L-operator L(z; p, p’) €
End(C? ® CV) [34, 35] by

. ’ —YpYp 2t tphty Z —2(yp = Xpthphp Z) X
LzZ;p,p)=| - . 2.4
@p.p) (X "oy = Xpltptpy Z) 1= XpXp lphyz0Z @4

In the same way as the S-operator, the action of the L-operator L(z; p, p’) is extended to the
tensor product C?> ® (CV)®" where the space C? is another auxiliary space; we denote by
Li(z; p, p’) the L-operator acting on the auxiliary space and ith component of the quantum
space (CV)®L as the L-operator £(z; p, p’) and other components of (C)®L as the identity.
The following properties give the reason why the chiral Potts model is considered as a
descendant of the six-vertex model [13]:

Proposition 2.2 The L-operators L;(z) = L;(z; p, p’) satisfy a Yang-Baxter relation
R(z/w)(ll,» ) id(cz) (idcz ® L; (w)) = (idcz ® L; (w)) (LZ,« (2)® idcz)R(z/w) (2.5)

with the R-matrix defined by

1—zo 0 0 0
0 w(l — 1l—w 0

R@=| 1(—wZ) ( 1—z)Z o | (2.6)
0 0 0 1-z0

and another Yang-Baxter relation

Sij(p, s a9 Li(zs p, PNLj(z39,9) = L(z:9,9) Li(z5 p, P)Si (P, P'5q.9),  Q2.7)
where S;;(p, p'; q,q’) is the S-operator acting on the ith and jth components of the quan-
tum space (CN)®L as the S-operator S(p, p'; q, q') and other components of (CN)®L as the
identity.
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At the superintegrable point, the cyclic L-operator £;(z; p;, p;) is reduced to

tplZ +Z —ypz(l — Zi)Xi> ’ 2.8)

Li(z; pi, pi) = (Xp, "1-=2z» 1 —t,z0Z;

where we have defined f, = x,y,. We introduce the monodromy matrix 7 (z;{p}) €
End(C? ® (CN)®") and the transfer matrix 7(z; {p}) € End((CV)®L) by

A(2) B(Z)> ’ t(z; {p}) = tre2 (T (z; {p})). (2.9

T(Z {p )_HE(Z Pupz)_ (C(Z) D(Z)

i=1

Here we have also defined operators A(z), B(z), C(z), D(z) € End((CV)®L). The spin chain
described by the transfer matrix 7(z; {p}) is called the 7,-model [4, 10, 40]. We remark that
the original 7,-model is defined in terms of the cyclic L-operator L(z; p, p) (2.4).

Proposition 2.3 The monodromy matrix T (z; {p}) satisfies a Yang-Baxter relation

R(z/w)(T (z: {p}) ® ide2) (idee © T (w3 {p)))
= (ide2 ® T(w; {p)) (7 (z: {p}) ® id2) R(z/w), (2.10)

where R(z) is the R-matrix defined in (2.6).

The Yang-Baxter relation (2.10) gives the commutativity t(z;{p})t(w;{p}) =
T(w; {p}t(z; {p}). Hence the eigenvectors of the transfer matrix t(z; {p}) are independent
of the parameter z. The relation also produces relations among operators A(z), B(z), C(2)
and D(z) [30]. In the next section, we need more general relations, which are collected in
Lemma A.1. By using the relations, the algebraic Bethe-ansatz method is readily applicable
to the transfer matrix 7(z; {p}) [41].

Let |0) be the reference state vy ® vy ® - - - ® vy. It has the following properties:

A)|0) = a(2)|0) = ]‘[(1 —1,,2)10),

D(2)[0) = d(2)|0) = 1_[(1 —15,20)|0),
n=1
C(2)10) =0,
for arbitrary z. @10

Proposition 2.4 Let {z;|i = 1,2, ..., M} be a solution of the Bethe equations:

M M

a@) [ | fGi/zp=d@) [ £/, @.11)
Jj=1 j=1
JGED) JGE)

where f(z) = (z — w)/(z — D)w. Then, vector |M) = B(z1)B(z2)--- B(zy)|0) gives an
eigenvector of the transfer matrix t(z; {p}):

7(z: {phIM) = (a(z) [TefGrz +d@ wa(a/z)) M), 2.12)

i=l1 i=1

The vector |M) is referred to as a Bethe state.
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If solutions of the Bethe equations (2.11) are non-zero, finite and distinct, we call them
regular [25]. If {z;]i = 1,2, ..., R} is a regular solution of the Bethe equations, we call the
Bethe state B(z;)B(z2) - - - B(zg)|0) regular, and denote it by |R).

2.3 Commutativity of Transfer Matrices

As a consequence of the relation (2.7), we obtain the Yang-Baxter relation between the mon-
odromy matrices 7 (z; {p}) and T (q1, ¢2; {p}), by which we shall generalize the algebraic
Bethe-ansatz method.

Proposition 2.5 The monodromy matrices T (z; {p}) and T (q1, q2; {p}) satisfy

L(z: q1.42) (T (z: {p}) ®iden) (ide2 @ T(q1. 23 {p}))
= (ide2 ® T(q1, g2: {p)) (T (z; {p}) @ iden ) L(z5 g1, 42). (2.13)

Here the cyclic L-operator L(z; q1, q2) defined in (2.4) is considered as a 2N x 2N matrix
acting on the tensor product C* @ CV of the auxiliary spaces. As a corollary, the transfer
matrix ©(z; {p}) commutes with the transfer matrix t(q1, q2; {p})-

Thanks to the commutativity of the two transfer matrices t(z; {p}) and 7(q1, g2; {p}),
they may have a set of common eigenvectors. For the 7,-model, we have obtained the
eigenstates through the algebraic Bethe-ansatz method. If a given Bethe eigenvector of the
7,-model has a non-degenerate eigenvalue of t(z; {p}), then it also becomes an eigenvector
of the SCP transfer matrix 7(q1, ¢»; {p}). However, in Sect. 4, we shall show in a sector
that the transfer matrix t(z; {p}) of the t,-model has degenerate eigenvectors with respect
to the sl, loop algebra and hence not all the Bethe states of the 7,-model are necessarily
eigenvectors of 7 (g1, g2; {p}).

3 Spectrum of the Superintegrable Chiral Potts Model

We shall show in this section that, if the spectral parameters ¢; and g, satisfy the condition
@ =q1(8) = (g, Xq, 0%, pL;l'), every regular Bethe eigenstate of t(z; {p}) is an eigenstate
of the SCP transfer matrix 7(q, ¢2; {p})-

3.1 Algebraic Bethe-Ansatz Method for the SCP Transfer Matrix

First, we give a fundamental relation, generalizing the standard algebraic Bethe-ansatz
method.

Proposition 3.1 Let B;, A; and D; denote B(z;), A(z;) and D(z;), respectively.
Let TT’/, (r,t’ € Zy) denote the operator-valued entries of the SCP monodromy ma-
trix T(qu,q2; {p}). By setting qi = q = (X4, 4, g) and gz = 4(s) = (yg, x4@°, pt;")
(s=0,1,...,N — 1) we have

By - B,Tf'|0)
= > ik Lok tkeDatzy) -+ a(z, )d () -+ d(2i, ) )T By, - B, 10).

{ightigh kgt
npg+np+np=n 3.1
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Here {is}, {je} and {k,} are such disjoint subsets of the index set ¥, = {1,2,...,n} that
the numbers of elements of the subsets denoted by #{i;} = ng, 8{ji} =na and t{k;} =np,
respectively, satisfy the condition ng +ns +np = n, and the coefficients c;/’ {ie); {Je}s tke))
are given by

T (fied: Uie: thed)

_1_[ l_[ Vr+l(zfz) l_D[ _Vr,_H—l(Zk[ 1_[ f]t 1_[ a)f’ l_[ a)f]k,

/'Lr I(Zl[) //Lr T+~ I(Zj() =1 /’Lr’—(+l,r(zkl

ielig) i€fip) Jjelie}
Jjetie} kefkg) kefkg)
With (¢ (2), v (2) and f;; defined by
(tyz — D(t,20° — D" yyz(1 — w?) 7 —Zjw
Uerp () = —2 - q — , v (z) = qf, fij= ——.
(tyz0™ — D(tzo™ = 1) tyzwt —1 (zi —z))w

(3.2)

A proof of the relation is presented in the next subsection. The point of the proof is
to arrange the product B; - -- B, T;/ into the order T BADC, which is possible by the help
of the relations (A.1) and (3.10). On the reference state |0), the terms with the operator
C(z;) vanish and the operators A(z;) and D(z;) are replaced by the factors a(z;) and d(z;),
respectively.

Next, we apply the transfer matrix 7 (g, g(s); { p}) to the reference state |0). It is directly
shown that the reference state |0) is an eigenvector of the transfer matrix 7(q, g (s); {p}) [6],

1(g,G(s); {pHI0) = Y 1.[0)

Lx—xy _y NlLtN_tN
:NL( [I\’In_ q Ypn q)Z(H Pn >w1L|0>’ (3.3)

N _ T
n=1pn T % yl’n T Ip, — 4@

where t,, = x,,¥,, and 1, = x,y,. Here we define A, by relation (3.3).

Let {z;]i = 1,2,..., R} be a regular solution of the Bethe equations (2.11) and extract
the term TJ’Bl -+ Bg|0) from the right-hand side of the relation (3.1). Then we see how
the operator Tf/ acts on the regular Bethe state |R). By setting r = t’ and taking the
sum on 7, it follows that the Bethe state |R) is an eigenvector of the SCP transfer matrix

t(q,q(s); {p}).

Theorem 3.2 Every regular Bethe state |R) is an eigenvector of the transfer matrix
1(q,4(s); {p}) with g = (xg, yg» ig) and G(s) = (yg, Xxq@*, "),

1(q.4(); {pHIR)

N—
Z HMTT(Zi)) |R)

= i=1

L N-1 /L N N s
1—[ X pn xq Ypn — Yq Z 1—[ Iy 14 “’r(HR)F(Iq)F([qw )|R), (3.4
—t,0" | F(t,0")F(t,0™t")

= 17n q y P 7=l
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where F (t) is a polynomial in t defined by F(t) = ]_[l-R:I(l —tz;)and {z;li=1,...,R}isa
regular solution of the Bethe equations (2.11).

Proof By taking the sum of the left-hand side of the relation (3.1) with T = 7’/ over v =
0,1,..., N — 1 and using the result (3.3), we obtain

N—1 N—1 R
> (]‘[ e (20) ) < BRTFI0)=) A (]‘[;m(z») B - Bgl0).
=0 =0 i=1
On the other hand, from the right-hand side of the relation (3.1), we have
N-1 /R
> (]‘[u”(m) By -+ BRT[|0)
=0 \i=l1

ny np

_ Z Z 1—[ Mzr(sz)vz+p(z_jp) 1—[ _Mrr(qu)vt—q+l(qu)

=0 fighUohtke)  p=1 I’Lr,‘[+p—1(sz) g1 Mr—q#—l,r(zk‘,)
nptnptnp=R

< | T1 efii T1 ofe T1 @fix |ai, - aj, de, - di, TELP By -+ By 10)

ielip) iefig) Jjetie}
jelie} kefky} kefkp}
R N-1 na np
— E E : l_[ a; e (2, Vet p(2j,) 7 —Hor (k) Ve—g11 (25,
- 1
S e\ | 720 bt ) p=1 Nr,r+p—1(sz) u=l Mr—q+l,r(qu)
npg=m np+np =R-m
ng np np
@ R=mtnanp Tr "D
l—[nnf/plrfkq’rfkwp v4ny Biy -+ Bi, 10)
r=1 p=1g=I

= ZR: Z ]_[ a; % Z a)nl(R—m)+nAnD
ig}

m=0 {ig ieXp\{ig} =0  {jghike}
npg=i np+np=R-m

n n
4 /'Lt-%—nD,H—nD(ij) 2 ~Mr4np,t4np (qu)

X l_[ Ur+nD+p(Zj,,)l_[

e Mrtnp,t+np+p—1 (ij)

Vetn —q+1(zk )
/’Lr+nD —q+1,t+np (qu) P ¢

ng nap np

< [TTTT 1 £ivir Fraiv Frgin T pmBis - Biy10)

r=1 p=1g=1
N-1

=Y T By Bxl0) =1(q.4(s): {p)IR). (3.5)

=0

In the second equality, we have calculated as
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1_[ 1_[ l_[ JiFix | Ay -+~ di,

ilig} jelje} kelke}

=l_[ dy l_[fik =l_[ l_[sz = 1_[ l_[ l_[ Jei fij | @iy -+ Ak,

kelke} iefig}Uije} kelke} iefig}Ulje} igelie} jeelje} keetke}

where we have employed the identity in Lemma B.3 which is derived from the Bethe equa-
tions (2.11). The unwanted terms m # R in (3.5) have been canceled out because of the
identity in Lemma B.4. O

3.2 The Ising-Like Spectrum Consisting of 2" Eigenvalues

From the expression of eigenvalues of the SCP transfer matrix ¢ (g, g(s); {p}) we can derive
eigenvalues of the diagonal-to-diagonal transfer matrices Tp(x,, y,) and f"D (x4, yq). From
the discussion similar to [8], the set of eigenvalues in the invariant subspace containing a
given regular Bethe state |R) are given in the following forms:

L

L Xp, — X,

Alxg,y)) = N7 ( H) X vty M F )G (g ™),
n=1"Pn q

(3.6)

You — _
Axg,yg) = N% (]_[ y’—N> xyeytou Ve F (@, )G(p,qN)
Pn

Here P, and P, are integers satisfying P, + P,=—-L — R mod N, and we recall
F@,) = ]_[,R (1= 1,2). G(u)) and G(uf]\’) are polynomials in p) satisfying G(u)) =
const. G(M ).

From the relation (g, g(s); {p}) = Tp(x,, yq)TD(yq, x,*), the product G (i N)G(M‘]]V)
is given by

A . . ‘L[’V —tN T(L+R)
G(u, )G = Pscp(t,) := - . 3.7
(MG = Psept)) Z H o ) Floon Fae ™ (3.7)
=0

Here Pscp(tév ) is a polynomial in t‘;\' of degree at most LWJ; the Bethe equa-
tions (2.11) correspond to the pole-free condition. We call the polynomial Pscp(¢) the
SCP polynomial. We remark that, in our result, only the case P, = 0 appears. The rela-
tion kzt;v =1- k/(,uf;' + M;N) + k'? tells us that the polynomial Pscp(t;’) is regarded as a
Laurent polynomial in MN of degree r = degPscp(¢) whose zeros occur in reciprocal pairs.
Then, by denoting the 2r zeros by {w'}, we have 2 solutions for G (uY ,) and G(MN ) in
the forms

G(u)), G(u)) = const. [ [(ud —wi"), (3.8)

i=1

where €; = 1 or —1 is independently chosen for the index i.
The 2" solutions for G(,uflv )and G (,uflv ) are similar to the 2" eigenvalues of the Ising-like
form [18, 38]. We thus call the set of 2" eigenvalues of the diagonal-to-diagonal transfer
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matrices associated with a regular Bethe state the Ising-like spectrum associated with the
regular Bethe state. In fact, in the homogeneous case of p; =--- = p;, it follows from the
Onsager-algebra structure of the SCP model that each eigenvalue is non-degenerate, that is,
the multiplicity of the eigenvalue specified by a set of {¢;} is given by one.

For the homogeneous case, the Ising-like spectrum of the diagonal-to-diagonal trans-
fer matrix was shown by applying the functional relations among the transfer matri-
ces [1, 2, 6-8, 41]. There are three types of the functional relations [6—8]: the first relation
is based on the fact that the transfer matrix of the SCP model is exactly a Q-operator for the
1p-model [13, 40], and it gives eigenvalues of the transfer matrix of the 7,-model. The second
relation is interpreted as a T -system [32, 33], which recursively generates the eigenvalues
of the transfer matrices in the fusion hierarchy. The third relation leads to the eigenvalues of
the product of the diagonal-to-diagonal transfer matrices of the SCP model with a constraint
on the spectral parameters. The algebraic Bethe ansatz of the 7,-model given in the previ-
ous section plays the same role as the first functional relation [41]. The algebraic approach
formulated in this section plays a similar role as the second and third functional relations.

3.3 Proof of Proposition 3.1

The subsection is devoted to a proof of Proposition 3.1. Our strategy is to derive a recursion
relation for the coefficients c,’l’r ({ic}; {Jje}; {k¢}) in the relation (3.1).

Lemma 3.3 The Yang-Baxter relation (2.13) is equivalent to the following relations:
e (AT + Br(DCOTT ™ = . ()T AR) + v (DT B(2),
o QBT + B DT ™ = Bt (DT AR) + 8. ()TT B(2), ‘o
Vet @QA@T ™ +8:@CRT! = a: T C) + v ()T D(2), o
Yor1@B@T ™ + 8@ DT = B QT C Q) + 8. ()T D(2),

where

o7 (2) = =Yg, Yg,2 + g Rgr @, Be(2) = —2(yg — Xgp g Mgy ®")s
Ve (@) = Ygr — Xpy Mgy Rg, @, bc(x)=1- quxqz:“'m:“qzzer-

Here we have omitted the dependence of the spectral parameters q, and q, in the coefficients
o (2), B (2), v (2), 8:(z) and the operator T} .

Lemma 3.4 For the operators TTT/, we have
fee ()BT
=T B(@) + ey 1 (T AR) — v ()T 7' D(2) — v (et (DT C(2). (3.10)

Here [iy:(z) and v, (2) coincide with those defined in (3.2), respectively, by setting q, =
(Xg, Vg» 1g) and qo = (yg, xq@*, 1),

Proof From the second and fourth relations in Lemma 3.3, we have

o (z)  Br(@) yo(2) r B (@
6:(2)  6:(2) 81 (2) 8:(2)

TV B(z) = ( ) B(2)T? T5 A2)
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/31 (2) TT ,ID(Z) + Ber(2) Bri1(2) t.[+_11C( ).
—1 ( ) 81”—] (Z) 81’ (Z)
By setting g1 = (x4, ¥4, 4¢) and g2 = (y,, x40°, ,u;l), we prove the relation. O

Lemma 3.5 Let I = {iy}, J = {j,} and K = {ks} be such disjoint subsets of the set ¥, =
{1,2,...,n} that 41 = np, §J =na, 8K =np and ng + ns + np = n. The coefficients
cu(l; J;K) = c;/’ (I; J; K) in the relation (3.1) satisfy the following recursion relation on
n:

c,(I; J; K)
1

=cpi1(U\{nh /i K)———
Mt/ —np,t4n, (Zn)

+Cn—l(1; J\{I’l}, K)L(Zﬂnwﬁn

t'—np,t+ns— 1(2n) el

= SV I () K, [Tofs | e

jel 1222 nD,I-HLA—l(Zn) iel\{n

e (3 T K\ gy —en G T

t'—np+1,T4+ny (Zn) el

=S e U g 7 K k) —2=2 S T oy | g

kek Ko —np+1,c4+ny (z) iel\{n)

=Y e Uk T\ () K\ (k) Vet Enlena ) (1_[ wfmwfik> -

ek Mr’—nD+l,r+nA—l(Zn) iel

36 UL I\ K o Lot G G (ﬂ “’fjiwfi"> 2

el I’—nD+Lr+nA—1(Zn) icl
+ ch—l(l U{TU N {n} T\ {7} K\ {k})

jeJ
keK

« Vo/'—np+l1 (Zn)vr+nA (Zn)

Mt/ —np+1,t4n,—1 (Zn)

ofjx l—[wfjiwfik 8nj&nk-

iel\{n)
Here, if the set S, is not a subset of S, we set c,(S \ Si;5-) =
(5 8\ 815 9) =ca(s; 5 S\ 1) =0.

Proof We apply the operator B, = B(z,) to both sides of (3.1) with n — 1 in place of n.
Let [= {l@}~ {]g} and K = {k(} be such disjoint subsets of the set X,_; that 8l =mgp,
fJ =ma, §K =mp and mp +m4 +mp =n — 1. By using the relation (3.10), we have

Bi--- B, 1B,T/ |0)

=Y (T KBTI B - By, Aj oAy Dy oDy 10)

Imp Jm g
J.K

~
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- o~ o~ 1 / V. (zn) /
— 't T T'—mp T+ma+1\Kn '—mp
= § a5 T K) <—TT+,,M B+ —————T, ., 1A
i Mt —mp,t+my (Zn) Mt/ —mp,t+ma (Zn)

ol

Ur’me(Zn) ' —mp—1 vr’me(Zn)UermAJrl (z) ' —mp—1
Tf+mA n Tr+mA+l Ca

Mt/ —mp,t+my (Zn) Mt/ —mp,t4my (Zn)

X By By, Aj - A, Di o Dy, 10).
By arranging the operators A(z), B(z), C(z) and D(z) in the order BA DC with the relations
in Lemma A.1 and by rewriting the terms in the form of the right-hand side of (3.1), we
obtain the recursion relation. O

We now prove Proposition 3.1. From the symmetry of the relation (3.1), it is enough to
solve the recursion relation in the case i} < -+ <iy, < Ji <+ < jyu, <k <+ <ky,
First we consider the case np = n, thatis, iy =£ for £ =1,2,...,n and J = K = ¢. The
recursion relation is reduced to

alipi¢) =cpa(I\{n}: ¢ ) ————

223 I(Zn)

From the initial condition cy(¢; ¢; ¢) = 1, the recursion relation is solved as

el ) =]

iel

Moo (2i) '

which is consistent with the form (3.1). Second we consider the case ng + n4 = n, that is,
n € {j,} and K = ¢. The recursion relation is reduced to

a5 7:9) = cuoi (13 I\ (s ) —a &) [Tos

223 ,THnA— I(Zn)

By using the result in the case ng = n, we obtain

1 4

Vr+p(Z/,z nwf
jis

(D3 J; ) =
l_[ Mz’r(zz) | M ot p— I(Z/p

iel iel

jedJ

which is also consistent with the form (3.1). Third we consider the case n € {k;}. The recur-
sion relation is reduced to

cnl; J; K)

R A e w (0

Kt —np+1,t+ny (Zn iel

£ UL T\ G K et Gl @) (wajiwfi") G-

el T’*HD“FI,T‘FYIA*I(ZH) iel

@3.11)

Note that, in the case, the coefficients c,_;({i;}; { j[} {ky}) with general sets {i;}, {j,}
and {k;}, which are not necessarily in the order ij < --- <i, < ji <. <j, <Kk
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e < k,’lD appear. Assume that the coefficients c¢,_;(I; J; K \ {n}) and ¢, ({ U {j}
J \ {j}; K \ {n}) in (3.11) are given in the form (3.1). Substituting the form of the coeffi-
cient ¢,—1 ({i¢}; {Jje}; {ke} \ {n}) and k,,;, = n into the first term of (3.11), we obtain

. vr’—nD-H(Zn) - .
—ear({iek: Uk (ke \ {n})—ut_wﬁm o waw

np—1
Vetp (ij) 2 Ve/—g+1 (qu) Vo' —np+1 (zn)
Mt/ —g+1,7 (qu) Mt/ —np+1,t4n4 (zn)

—(=)p!
l_[/'Lr I(er) p=1 M/ t4p— l(ij) g=1

ng

< [Tofi IT ofi TT ofiul]efin

iefip} iefip} jelie) r=1
Jjelie) kelkg\{n} kelkg\{n}

1
(3.12)

. . M/ —n ,r(Zn)
= cu(fiek; Ljeh: (ke ot
Mt/ —np+1,1+n4 (z) jelio) fjrl

In a similar way, substituting the forms of the coefficients c,_;({i¢} U {j,}; {je} \ {Jp}

{k¢} \ {n}) and k,, = n into the second term of (3.11), we obtain

na

D iy U s Gk \ Ui thed \ )

Jp#n
np
Vo' —np+1 (Zn)VH»nA (zn)
X o | [Tefii@fin | &,

r=1

,uz’—nD+l,r+nA—l(Zn)
Vegp (Zj ,

1_:[ Mz’ o 4p/— I(Z/ /)

=Y 1H
ol /Lr r(er) Ko T(Z/p
jp#n
n np—1
z UH“/’LI(Z/.[:’) r Vz LZ‘H(qu) Vr’—nl)Jrl(Zn)VrJrnA(Zn)
w

< I1
223 z+p/—2(ij/) a=1 Mr/—q+1,r(qu) /Lr’—nD+1,r+nA—1(Zn)

p'=p+1
np
[ [efi,iefin

X l_[ a)fj,- l_[ wfik 1_[ a)fjk ( ) gnjp
j r=I1

iefig)Uijp) ieliglUljp} jetig\lp}
jetig\lip} kelkg\{n} ke{kg\{n}
nA
/’LT’,r+nA—1(ij) Mr’—r1D+1,r(Zn) Vitny (zn) 8njp
Mt/ —np+1 r+nA71(Zn) Vidng (ij) fijl

= —co(liek: Ueh: tke)) ; ey
@ (3.13)

X .
. fjn

jelieN\lip}

Hence, by combining (3.12) and (3.13), the coefficient ¢, ({i;}; {j¢}; {k¢}) is shown to be in

the form (3.1) if the following relation holds:
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n
lj/r/—np-%—l.r(zn) d 1

Kt/ —np+1,t+ny (zn) p=1 a)fjpn

nj
_ Z MI’.I+’1A—1(ij) l’Lr’—nD+l,z(Zn) Vitny (Zn) gﬂjp fjjp -1
p=1 :u’r’r(sz) //Lt’anJrl,rJrnAfl(Zn) Vitng (ij) fjpn Jelientn) fj’l

which is the identity in Lemma B.3.

4 The sl, Loop Algebra Symmetry of the 7,-Model and Degenerate Eigenspaces
4.1 Gauge Transformations on the L-Operator

We now introduce another L-operator in order to show the sl, loop algebra symmetry of
the t,-model. The degenerate eigenspace of the transfer matrix constructed from the new
L-operator is identical to the degenerate eigenspace of the 7,-model which we have intro-
duced in Sect. 2.2.

Let us introduce the L-operator £;(z) € End(C? ® (C¥)®L) (i =1,2,..., L) given by

1 1 1
- “2(z(k2); — 77V (k" 2); —qg7! ;
Fio= (1 (z(k2) : (k=2):) L g )(fl) ). @0
(g —q7 )e); g2 (z(k72); —z7 ' (k2);)
Here ¢ is not a rapidity on the Fermat curve (2.1) but a generic parameter, and {(k);, (¢);, (f);}
is the N -dimensional representation of the quantum algebra U, (s[) non-trivially acting only
on the ith component of the quantum space (CV)® as

kv, =eq" " v,,  evy =ea[N —clve_1,  fu,=a [0+ ve,

with o« # 0 and [n] = qqn _;:ln . We set ¢ =1 for odd N and ¢ = —1 for even N. One sees

that the L-operator Li(2) is nothing but that of an XXZ spin chain with N-state local spins
and a twist parameter. The L-operator £;(z) satisfies the Yang-Baxter relation (2.5) with the
R-matrix of the six-vertex model given by

1 —z%¢* 0 0 0
0 (1-z)g z(1—¢? 0
0 z1—¢% (1-272%q 0
0 0 0 1—z?

Rev(2) = (4.2)

(]2

We introduce the monodromy matrix T(z: {p}) € End(C?® (CY)®") and the transfer matrix
7(z) = 7(z; {p}) € End((C")®") as

L - A B
TG p) =[] Litza?) = (23 ﬁiﬁi) ’

i=1

T(z: {p) = 2 (T(z: {pD)-

(4.3)
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In a way similar to Sect. 2.2, we apply the algebraic Bethe-ansatz method to the transfer
matrix T(z; {p}) to obtain Bethe eigenstates. The associated Bethe equations are given by

ﬁ fpnzzeqN 1 I 9’ =35 (4.4)
wot 74P —eq 5 =

The transfer matrix 7 (z%; { p}) of the T,-model defined in (2.9) is equivalent to the transfer
matrix 7(z; {p}) at eq" = 1. We set w = ¢g° with the primitive Nth root of unity ¢ for odd

11
N and the primitive 2Nth root of unity ¢ for even N, and take e = x, y,,>. Then, in terms
of the operators Z; and X;, the representation of the quantum algebra U, (sl,) is expressed
as

1 l 1

% Y, 1 x5 2 y2 1 1
k) =q~'Z7", (e); = 212 X (z -Z2), ()i ==z} -7, )X,
q9—9
by which the L-operator £;(z) at eq™ = 1 takes the form
1 1 _1 1 1 _1 1 L _1
; a2 (-29722; > +27'q2 Z7) Xp Vi (Z7 = Z; )X
Li(z) = 11 _1 1 | ;1 .
Xy X7 N2 =20 q2(—2922} +27'972Z;7)

The L-operator £i(z) is transformed to the L-operator L;(z%; pi, p;) defined in (2.8) as
follows:

1 0 ! 1 %Z ! 1 1 0 —r
0 igh)neaZ (tp.2q7) 0 -} (2% pi. Pi)-

Through the gauge transformation, the Yang-Baxter relation with the R-matrix Re,(z) for

the L-operator L; (z) is transformed to the Yang-Baxter relation (2.10) with the R-matrix

R(z) (2.6). In the case of odd N, the L-operator L;(z) satisfies the Yang-Baxter rela-

tion (2.7). On the other hand, in the case of even N, the L-operator £;(z) does not satisfy
1

the relation (2.7) due to the multiplication by the operator Zf. However, the conserved op-
erators derived from an expansion of the logarithm of the transfer matrix 7 (z; { p}) commute

1
with the transfer matrix #(g1, g2; {p}) since the operators Z; are canceled out in the deriva-

1 1
tion. Furthermore, the product Z} --- Z}, which appears in each entry of the monodromy
matrix 7 (z; { P}, acts as the constant g™ on the sector spanned by the vectors Vo @ Qg
satisfying o1 4 - - - + 0, = M. As we shall see below, each Bethe eigenstate and its L(sl,)-
descendant state belong to one of the sectors. Therefore, transfer matrices 7(z; {p}) and
7(z; {p}) thus share a set of common eigenvectors.

4.2 The sl, Loop Algebra Symmetry

‘We now show the sl, loop algebra L(sl,) symmetry of the ,-model. We first obtain a rep-
resentation of the quantum affine algebra Uy (sl») in a limit of the entries of the monodromy

matrix 7 (z; {p}):
A(z) . D@ ; |

A= lim — = lim m=k2Q®---®k2,
Tom()gr TO0m()q?
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~ L
. B(z) Ll 141 1 1 1
B, = lim —— = 2 ’[ F2 ki2®...®kiz® kT2 ®--- kT2,
si= lim o Z;q (IRFAES) f
i= i—1 L—i
C(2) L.
Cii= lim ———~ = L F3 FHFI® - kTR @kEI @ @K1,
T A e mnL ) ;q nta™)
= i—1 L—i

1
where m(z) = [1%,(t22q? — t5,°2"'q~?) and ni(z) = +z¥'(q — g"). They indeed give
a finite-dimensional representation of U, ‘; (s:[z) through the map 7® : U, (; (s:lz) — (CM)®L
defined by

1
2

7 ko, eo, e, fo, fi > AT B, Cy,C_, B_,

where {k;, e;, f;]li =0, 1} is a set of the Chevalley generators of U[; (g[z).

Second we show that, in the limit g — 1, the representation 7 ") of the quantum affine
algebra U ; (£:[2) gives a finite-dimensional representation of a Borel subalgebra of L(sl,).
The s, loop algebra is realized by the Drinfeld generators {h,, x, x, |n =0,1,2,...} sat-
isfying

[hna hm] = Oa [hn’ X, ] = :l:zxn+m» [X;_, -xr;] = hn+m~

The algebra has two Borel subalgebras b, generated by {h,, x;}, x, |n >0,m > 0} and b_
generated by {h_,, xT,,, x7,|n > 0, m > 0}. Define the operators

L
1
HW :=N;1d®-~-®id®h®id®m®id,
B = lim (By)" Y = lim (c)"
egN1 [n]! ] egN—1 [n]!

for odd N,

where hv, = (N — 1 —20)v, and [n]! = [n][n — 1] - - - [1]. The operators B(iN) and C:(tN) are
well-defined in the limit eg” — 1 since both the operators (B.)" and (C+)" include the
factor [N]! They satisfy the relations

B, B =1c", c™1=0

[H(N), B:(tN)] — —ZB(N), [H(N), C(N)] ZC(N)
(B, 8L, (B, c'm =0, (¢, (¢ e, BN =

Here the last two relations are obtained from the limit eq™ — 1 of the higher-order g-Serre
relations in U, (sly) [36]. Then we find that the map ¢, : by — End((C")®L) defined by

pi(ho):=HY,  g.H=cP,  ¢p(x7):=BY

is extended to a finite-dimensional representation of the Borel subalgebra b, and the map
_:b_ — End((C")®%) defined by

o_(hy):=H™, o (I):=CY, o (xy):=B"

is also extended to that of the Borel subalgebra b_.
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Proposition 4.1 The t,-model in a sector specified below has the Borel subalgebra symme-
try in the following sense: the transfer matrix T(z) = 7 (z; {p}) at eq" = 1 satisfies

[f(l)_lf(z),<p+(x)] =0 forxeb,

in the sector with A*> = g* and

[f()7'F(2), 9-(x)] =0 forxeb_

in the sector with A> = q~*.

Proof In the limit e¢g¥ — 1, we have

A(Z)B(iN) (N)A(Z) z lqi%B(N_l)B(Z)Ail,
D@BLY =eB" D) +797 BV B(2)AT,
A’(Z)CLN) (N)A(Z) _|__Zj:1 —7c(N 1)c( )A:(:I

D@CY =eC Do) - g5 V@) AT
By considering them in the sector with A2 = g*, we prove the proposition. O

Let us consider the condition A?> = g*! in detail. From the relation A’ =k ® --- ® k,
we have A2 = glg(N=DE=2M — =L=2M i the sector spanned by the vectors vy, ® -+ ® v,
satisfying 0| + - - - + o7 = M. Then the condition A?> = g* means M + L =0 mod N and
A% =g % means M =0 mod N. One notices that the reference state |0) belongs to the
sector with A2 =¢~.

We now show the sl, loop algebra symmetry of the 7,-model. It is known that every
finite-dimensional irreducible representation of the Borel subalgebra b is extended to that
of the sl, loop algebra [14, 22]. Therefore, it follows from Proposition 4.1 that the transfer
matrix of the 7,-model has the sl, loop algebra symmetry.

Third we now show that any given regular Bethe state |R) in the sector with A% = g**
is a highest weight vector with respect to the representation ¢, of the Borel subalgebra b
and the highest weight representation generated by the Bethe state is irreducible. A vector
Q is called highest weight of the Borel subalgebra b, if it is annihilated by x; (n > 0) and
is diagonalized by h, (n > 0), and is called highest weight of b_ if it is anmhllated by x7,
(n > 0) and is diagonalized by &_,, (n > 0). The conditions are equivalent to [21]

XFQ=0, hQ=rQ, (stv) (xrln? Q=yxtQ (melZ.) forb,,
Q=0 hQ=rQ, (xm‘? (xo) Q=yxQ (melZy) forb_,

where r € Z.¢ and x € C. By using the set {x} for a highest weight vector of the Borel
subalgebra b, we define the highest weight polynomial as [23, 24]

Py =) xa(=0)".

m>=0
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Proposition 4.2 At eq"™ =1, every regular Bethe state |R) in the sector with A> = g*" is a
highest weight vector with respect to the representation ¢y of the Borel subalgebra b.. The
highest weight polynomial is given by

e VS [y 1ENEY 1
PD (E': ) = N Z (1_[ 1 — tq:lsq:t21> Fi(fqizr)F:t(Sqiz(TH)) ’ (4'5)

=0 \n=1 Pn
where Fy(§) = ]—LR:I a1- Sziﬂ) and {z;} is a regular solution of the Bethe equations (4.4).

We shall give a proof of Proposition 4.2 in Appendix C.

Here we can directly show that every highest weight vector of the Borel subalgebra be-
comes a highest weight vector of the sl, loop algebra in a finite-dimensional highest weight
representation (see, Appendix A of [25]).

Let us discuss a physical consequence of generic inhomogeneous parameters. For a given
regular Bethe state, the zeros of polynomial PDi(g“) (4.5) should be distinct, if inhomoge-
neous parameters {p,} on the Fermat curve (2.1) are given by generic values. If they are
distinct, it therefore follows that the highest weight representation generated by the regular
Bethe state is irreducible and the polynomial P3(¢) is identified with the Drinfeld poly-
nomial [15, 23, 24, 27]. Assuming that the zeros of the Drinfeld polynomial are distinct,
we express the distinct zeros PDi @by g, i=1,2,...,r =deg PDi(;“)). Then, the repre-
sentation is isomorphic to the tensor product of two-dimensional evaluation representations,
Vi) ® --- @ Vi(¢.), and the 1,-model in the sector A% = g** has the 2"-dimensional
degenerate eigenspace associated with the regular Bethe state.

4.3 Complete N-Strings and Degenerate Eigenvectors of the sl, Loop Algebra

In Propositions 4.1 and 4.2 of Sect. 4.2, it has been shown in the sector that the ,-model has
the s, loop algebra L(sl,) symmetry and also that every regular Bethe state | R) is a highest
weight vector of L(sl,). Therefore, the degenerate eigenspace of the 7,-model associated
with the regular Bethe state | R) is given by the highest weight representation generated by
|R) through generators of L(sl,).

Let us define a complete N-string by the set {e*w !l =1,2,..., N}, where we call A
the center of the string [29]. By adding m complete N-strings {e*iw~ |l =1,2,...,N, j =
1,2,...,m} to aregular solution {z;|i = 1,2, ..., R} of the Bethe equations (2.11) and tak-
ing the limit A; — £00, we obtain a formal solution {z;} U {e®w™!} of the Bethe equa-
tions (2.11) with M = R+ mN. We call it a non-regular solution. It is clear that the transfer-
matrix eigenvalue (2.12) for a non-regular solution {z;} U {e®j @™’} is the same as that of the
original regular solution {z;}.

We now discuss that the SCP transfer matrix #(q, g(s); {p}) with g = (x4, y4, it4) and
q(s) = (yg, x40°, u;l) should have degenerate eigenspaces. We observe that the eigenvalue
(3.4) of the SCP transfer matrix (g, G(s); { p}) with a non-regular solution {z;} U {e*/ ™"}
is the same as that with the original regular solution {z;}. As a consequence, the degener-
ate eigenspace of the transfer matrix t(z; {p}), which contains a regular Bethe state and
non-regular Bethe states, corresponds to a degenerate eigenspace of the transfer matrix
1(q,q(s); {p})-

Non-regular Bethe eigenstates with complete N-strings may vanish as we shall see in
Sect. 4.2. However, there are several approaches to obtain non-zero eigenstates correspond-
ing to non-regular solutions such as complete N-strings [19, 20, 25, 26, 28]. Thus, from
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the observation that the eigenvalue (3.4) does not depend on complete N -strings, we sug-
gest that the SCP transfer matrix (g, g(s); {p}) is also degenerate in the L (s[,)-degenerate
eigenspace of the 7,-model generated by a regular Bethe state.

We thus propose a conjecture that the sl, loop algebra symmetry of the 7,-model gives
a degenerate eigenspace of the SCP transfer matrix 7 (g, g(s); {p}) in the sector. Intuitively,
in terms of complete N-strings, we may interpret that every L(sl,)-descendant state of a
given regular Bethe state should be expressed as some linear combination of such non-
regular Bethe states consisting of complete N -strings. Furthermore, the Drinfeld polynomial
PDi(g“) (4.5) is identical to the SCP polynomial Pscp(¢) (3.7) associated with the regular
Bethe state. Thus, the L(sl;)-degenerate eigenspace of the 7,-model should have exactly
the same dimensions as the invariant subspace associated with the Ising-like spectrum (3.6)
characterized by the SCP polynomial Pscp(¢).

4.4 The sl, Loop Algebra Degeneracy and the Ising-Like Spectrum

We now discuss an important consequence of the commutativity of the SCP transfer matrix
t(q,q(s); {p}) with the transfer matrix t(z, {p}) of the t,-model. Here we note that basis
vectors diagonalizing commuting transfer matrices do not depend on the spectral parame-
ters.

We define the completeness of the Bethe ansatz of the t,-model at the superintegrable
point by the following conjecture:

Conjecture 4.3 All regular Bethe states in the sector with A?> = g** and their descendants
with respect to the sl, loop algebra give the complete set of the Hilbert space in the sector
on which transfer matrix 7 (z, { p}) of the ,-model acts. Here we recall g™ = 1.

For generic values of spectral parameter z, regular Bethe states in the sector are non-
degenerate with respect to the eigenvalue of transfer matrix t(z, {p}). The degeneracy in the
eigenspectrum of transfer matrix t(z, { p}) should be given only by the s, loop algebra sym-
metry. Similarly, for generic spectral parameters, regular Bethe states are non-degenerate
with respect to the eigenvalue of the SCP transfer matrix 7 (g, g(s); {p}). The eigenvalue of
t(q,q(s); {p}) is also generic with respect to the spectral parameters, as shown in (3.4).

Thus, if Conjecture 4.3 is valid, i.e. the completeness of the Bethe ansatz for the t,-model
is valid, we have the following corollary:

Corollary 4.4 In the sector with A> = q**, the SCP transfer matrix t(q1, q2; {p}) is block-
diagonalized with respect to the L(sl,)-degenerate eigenspaces of the t,-model associated
with the regular Bethe states. Here we recall eq™ = 1.

Assuming the arguments for deriving the formula of eigenvalues of the diagonal-to-
diagonal transfer matrices Tp(x,, ¥,) and Tp(x,, y,), we have the following conjecture:

Conjecture 4.5 In the L(sl,)-degenerate eigenspace of the 7,-model associated with a reg-
ular Bethe state |R), the diagonal-to-diagonal transfer matrices Tp(x,, y,) and Tp (x4, y,)
of the SCP model have the Ising-like spectrum (3.6) associated with the regular Bethe state
[R).

Let us consider some examples of the invariant subspace of the Ising-like spectrum as-
sociated with a regular Bethe state |R). If the degree of the Drinfeld polynomial PDi €) is
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zero, then |R) is an eigenvector of both of the two diagonal-to-diagonal transfer matrices
Tp(x4, y,) and f"D (x4, ¥¢)- The Bethe state should generate a singlet of the sl loop algebra,
i.e. a one-dimensional highest weight representation. One notices that, if R = L(N — 1)/2,
the degree of the Drinfeld polynomial P3 (¢) is zero.

However, if the degree of the Drinfeld polynomial is nonzero and given by r, the SCP
transfer matrix #(qi, ¢2; {p}) should be block-diagonalized at least with respect to the
L(sl,)-degenerate eigenspace of the 1,-model associated with |R). Furthermore, the SCP
transfer matrix ¢ (g, g(s); { p}) should be degenerate in the 2" -dimensional L (sl,)-degenerate
eigenspace of the 7,-model associated with |R), as it was conjectured in Sect. 4.3.

4.5 N =2case
We verity in the case of N = 2 with a set of homogeneous parameters that the Hamiltonian
of the SCP model has the Ising-like spectrum in the L(sl,)-degenerate eigenspace of the

7,-model. In the case, the SCP model is the two-dimensional Ising model. The Hamiltonians
of the SCP model and the t,-model are given in the forms

L L L
— z X X — x Yy o Y X
Hscp = E o7+ E 0; Oit1 H, = E :(‘71‘ 041 = 07 0iq1)s
i=1 i=1 i=1

where 0, 0¥ and o are Pauli’s matrices. In terms of Jordan-Wigner’s fermion operators:

i—1 L

1 "
Tt z = _ —V=1ki+Z) ..
¢ =0; Haj, ck_LZe e,
j=1 i=1
the Hamiltonian H-, in the sector with §% := % Zf: 1075 =0 mod 2 is written as

Hy, = sin(k)é( G,

kekK

where K = {F, ST” e, %}. For even L, the sl, loop algebra symmetry describing a

degenerate eigenspace of the 7,-model is given by

hy =) cot™ (g) ().

keK
k k
+ 2n+1 - 2n—1
x5 = Zcot <§> (E)g, X, = Zcot (5) (F)i,
keK keK

where {(H )y, (E)k, (F)i} is a two-dimensional representation of the sl, algebra given by
(Hu=1-&é& - éh,  (Ex=cyd,  (Fy=gc,.

Here we should remark that for the XX model under the periodic boundary conditions the
Chevalley generators of the sl, loop algebra symmetry were constructed in terms of the free
fermion operators [26].

The reference state |0), which is a highest weight vector, i.e. x,7|0) = 0 and £,|0) =
> cot? (k/2)|0), generates a 2-/2-dimensional irreducible representation corresponding to
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a degenerate eigenspace of the Hamiltonian H,. On the other hand, in the sector, the Hamil-
tonian Hscp is expressed as

Hsep =2 (H)e — 21 Y _ (cos(k)(H)i + sin(k) ((E)x + (F)i))-

keK keK

It is clear that the Hamiltonian Hscp acts on the 25/2-dimensional irreducible representation
space. The 21/2 eigenvalues of Hscp and the corresponding eigenstates are given by

E(Ki; K )=2%" /1 =2kcos(k) + 21> =2 Y /1 —2hcos(k) + A2,

keKy keK_
K Ko) = [ (costy +sinb(F)) T Gsinbh —cos(F)o)0),
keK keK_

where K, and K_ are such disjoint subsets of K that K = K, U K_ and tan(26;) =
Asin(k)
Acos(k)—1"
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Appendix A: Relations among the Operators in (2.9)

Lemma A.1 Let A;, B;, C; and D; denote A(z;), B(z;), C(z;) and D(z;), respectively. We
have

p=1 \q(#p)

n ip
Bj .-+ Bi, Ao — Z ( H fi,,iq) goi, BoBiy -+~ "'BinAi,,) )

p=1 \qp)

©B;,Do+Y ( I1 i

n

Ao Ay Cot Y
p=1

ip
) 80i, BoBi, -+~ "'BinDip) ;
'»
1_[ ﬁqip gOi,,AOAil '..Aincip

P

q(#p)

=
I =
- =
=

r=1 \4Fp)

Dil ...D,-”Co— (1_[ f,'p[q

ip
80, Doy -+ ---D,-,,c,-,,) ,
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DoA;, -+ A,
= Aiy -+ Ai, Do
n iy iy
+o" 1_[ Sigip (ginBoAi, ce T A G+ 80 Bi, Ary "'Ai,,C(J),
p=1 \q(#p)
CoB;, -+ B;,
—w'B;, - B; Cy

+a)2"'<Zg0ipBi1 coe By,
p=1

X l_IfOiqfi,,ip AoD;, — l_[fi,,i,,fiqo A;, Do

q(#p) q(#p)

ip g
- ngpgmq BoBiy -+ " By, fiyi, l_[ Sipic fivig AipDi,]),

p#q r(#p.q)
(A1)

where fi; = f(z;/z;) and g;j = g(z;/z;) with

l—w

—w
EEN

Proof The relations with n = 1 are equivalent to the Yang-Baxter relation (2.10). Forn > 2,
we employ induction on n with the identity in Lemma B.2. ]

Appendix B: Identities

We collect here several useful identities.

Lemma B.1 Let S be a subset of Xgp ={1,2, ..., R}. We then have
(o 11 #)=T1(s 1 1)
ieS JETR\S ies JETR\S

The following three identities of rational functions are proved by verifying that all the
residues in the left-hand side are zero.

Lemma B.2
((Hfik) - (Hﬁz)) ga+ Y | [] i | euign=0.
i=1 i=1 i=1 \j(#)
Let {i¢}, {j¢} and {k,} be such disjoint subsets of the set X, = {1,2,...,n} that
#{ie} = ng, #{je} = na, #{ke} =np and ng + ny + np = n. We have the following iden-

tities:
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Lemma B.3

MKt/ —np+1, r(Zn)
o' ]_[f,p j—

Mz '—np+1,7+nys (Zn)

na

Mr’,r+nA—l(ij) Mr’—nD+l,t(Zn) Vidny (zn) "A
+ Z 8n, Jp 1_[ f]r Jp

.ur’r(sz) Mr’—np+l,r+nA—1(Zn) Vetny (ij

=1
? r(#p)

or, explicitly,

na
Tngtp — Zn@ B tznerrnAJrI -1
b Zug4p — tza0™ ! — 1
p=I
na 1 nA
Z th3+pwr+ -1 z,(1-w) Znpg+r — Snp+p® 0
p=1 12,0 =1 2y = Zupp w1 Znptr — Zngtp
r(#p)
Lemma B.4
nA
Mr+nl),r+n1) (Zj,,)
E Vr+rzp+1)(z_fp)
Uehtked  p=1 MT+I1D,I+"[)+])—1(Zj1;)
npt+np+np=n
np
~Mrtnp,tnp (qu)
X Vr+nD—q+1(qu)
a=1 /’Lr+nD—q+1,r+nD(qu)
X l_[ @ fiir 1_[ Ofkyiy 1_[ @f,j, =0
ielip) icfig) jetie)
Jjetie} kefke} ketke}
or, explicitly,
np naA np
NETY ) - Il = =0
a)r+nD+l -1 t wttp — :
Uitk pmt ! Chy L amt %~

npt+np=n—npg

Appendix C: Proof of Proposition 4.2

We give a proof of Proposition 4.2. The detailed proof for the case of the XXZ-Heisenberg
spin chain at roots of unity is presented in [21]. Here we show only some different points
from it.

For simplicity, we consider the representation ¢ of the Borel subalgebra b... Let A=
A(zi), B: = B(z;), C; = C(z;) and D; = D(z;) for i € £y ={1,2,..., M}. One of the
relations in Lemma A.1 is rewritten as follows:
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CoB, B
M i
:Bl"'BMC0+ZgOiBl"'v"'BM l_[ijfji AgD; — Hfjofij A; Dy
i=1 J (i) J(F#i)
_ZgOingBOBl """ - By fij 1_[ Jufij | AiDj, (C.1
i#] L. )
where
2,1 _ .2 _1
L. 79~ —25q .. zizj(q" —q)
fii=FGilzj) = —F—5—. 8ij=38Gi/zj) = —5——.
Zi _Zj i _Z/
Lemma C.1 Let S, ={iy, i, ...,i,} be a subset of the set ¥);. We have
co | []B0=2a6:2m Y. | TI 8]0 (C2)

leXy SpcEy \1€Sy\Sn

with the coefficient A(S,; X ) given by

INCED e (HZi) DI [l e Tl e T @™ 3 Fnvin

ieS, Pe6S, =0 1<j<n—1 n—l<j<n I<r<s<n

Here &, is the symmetric group of order n acting on the set {1,2, ... ,n} and

L
1 1
s s . _N-1y 7 LN -5 -1 -1 _N ~
af =a’(z;):=q 2 | |(tpnzi€2q2 —1p, 2z € 2q 2)| |qf,-,-,
n=1 Jjes

L
1 1
-5 _ =S . Nolp R S -7 -1 L1 N_4 -1 7
@ =a’(z):=q 2 | |(t]7nzi5 2727 1y, 7 €297 )| |q fii-
n=1 jes

Proof The case n =1 is obtained in the limit zo — oo of the relation (C.1) divided by the
factor m(zp)n(zo). For general n, we use induction on 7. O

We consider a diagonal condition xg x; 2 = x,"Q for the regular Bethe state |R) in the
sector with A2 =¢%. Set M = R+ N and n = N in (C.2). Let {z;|]1 <i < R} be a reg-
ular solution of the Bethe equations (4.4) and put {z%H, = efl =elg7 |1 <1< N} We
assume that the solution {z;|1 <i < R} is also regular in the limit eg¥ — 1. Then we
have

COMTTB || T]B |100=4AN:Zrew) D [T 8|0,

leZy ieXp SnCER+N \/€Zr4N\SN

where Zy :={R+1,..., R+ N}. We investigate the diagonal term Sy = Zy in the limit
A — —oo0 after dividing both sides of the equation by the factor [, N M(Zr+)N+(ZR41)-
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Lemma C.2 We have

INVAED Y

1
=[] ———— | A@w: Zerw)

lezy m(z)n4(z;)

N N-1 —
=& q>(eo>Z<—>’[N]4‘<”—”’ =1 @+(puea )
g "N (g — gV — l F(e) Fy(er41)

where

= R
¢+($) = 1_[(1—[’1—1%-)’ F+(5;'):l_[(1 _Z?E),
n=1 plin
®(eg) := ¢’+(608q:)F+(60)F+(6N+]).
[Ti=1 é+(eja™)

Proof From Sy ={i},...,in}={R+1,..., R+ N}, we have

1 -
Xr -Xr
[ > 1 eide T1 @fe [T Feeerners

m
leZy @) PeGy 1< j<N—I N—I<j<N 1<r<s<N

_ H (¢+(6j8qN) F+(6j+1)> (¢’+(6j5qN2) F+(€j—l)>[N]‘
¢+leja™) Filep) J 2\ di(€iq7h)  File)) "

I<j<N

_ 9 (€0eq™) Fy (€0) Fy(en41) 1_[?:11 Gi(€jreq™)
[T ¢ (e;a7H) Fi(e)Fyi(ers1)

N]!

Here we have used the fact that [ [, <res<N fR+ pr.r+ps = 0 unless P is the longest element
in the symmetric group Gy. O

We define j, by the following series expansion:

N-1 2j—N—1
g N
[ 9+ (Eeq 3 g ey, C3)

Fi(Eq)F(6q™") =m>0

Lemma C.3 In the limit A — o0, that is, €y — 0, we have

A(Zy; Zren) = Z4 (IN1)? + O (ep).
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Proof Put & = €9g?*! in the definition of x;’ (C.3). Then

i [ ] —(N=DI niv;ll P (coeq® 2Ny

F(€0g®) Fy(e0g™+?)

_)1 |: ]me ( qu)m 2m—N+1)l

m=0

+1)

=2 e [T0 =) = e Vg™ 57 (g = ™) + 0™,

where we have used the g-binomial theorem and ]_[;V:BI(I —g?mDy =0 for 0 <m <
N —1. O

Proposition C.4 Let g be the Nth primitive root of unity for odd N and the 2N th primitive
root of unity for odd N . The regular Bethe state |R) in the sector with A> = q* satisfies

043" s (6"
0 L [R) = 4y IR,
m: m:

where yr =lim.v_ | X,

Proof We consider only the case m = 1. The case of general m is proved in a similar way
by setting M = R +mN and n =mN in (C.2). From the lemma above, we have

€™ T1

leZy

— B |R) = X;\?([N]!)2|R) + O(¢&p) + off-diagonal terms,
m(z)n(z;)

which, in the limit A — oo, yields

(CHN BHY
[N]' [N]!

|R) = % |R) + off-diagonal terms.

In the sector with A> = ¢, the off-diagonal terms vanish in the limit g™ — 1 [21]. |

By taking the limit ¢ — 1 in the definition of ¥, (C.3), we have

N-1 i
l_[j=l ¢+(Eq2] 1) _ Z X+(_g)m
FL@F g™ =™
The numerator of the left-hand side is rewritten as
L | _~NgN,—N

N . 1 &g
,1-:[. o D =[] "

1
n=1 tpn Sq

Then we obtain

L | _y-NgNg=N
Pn + m
(H (=150 >F+(Eq)F+(Eq 5= 2 O

n=1
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By taking the sum over T =0, 1,..., N — 1 after the substitution & > ¢!, we have
3 ﬁ L—1,"8" 1
S\ 11,607 | FL@aPFEq™ )

N—-1
=Y ) X (—EQ"FT =N Y x (=&Y = NP EY),

=0 m=>0 m>=0

which proves Proposition 4.2.

We give a remark. One can derive Proposition 4.2 from the proof of the spin-1/2 inho-
mogeneous case through the fusion method [21]. However, we have presented the direct and
straightforward approach here.
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